UN在遠征中經過的最大航途---銀河系

UN在遠征中經過的最大航途---銀河系

銀河系(MilkyWay)是太陽系所處的星系。是一個由2,000多億顆恆星、數千個星團和星雲組成的盤狀恆星系統,它的直徑約為100,000多光年,中心的厚度約為6,000多光年,因其主體部分投影在天球上的亮帶被我國稱為銀河而得名。

概述銀河系MilkyWaygalaxy或TheMilkyWaysystem[1]。

銀河系側看像一個中心略鼓的大圓盤,整個圓盤的直徑約為10萬光年,太陽位於距銀河中心2.6萬光年處。鼓起處為銀心是恆星密集區,故望去白茫茫的一片。銀河系俯視像一個巨大的漩渦,這個漩渦有四個旋臂組成。太陽系位於其中一個旋臂(獵戶座臂),逆時針旋轉(太陽繞銀心旋轉一周需要2.5億年)。

銀河系呈旋渦狀,有4條螺旋狀的旋臂從銀河系中心均勻對稱地延伸出來。銀河系中心和4條旋臂都是恆星密集的地方。(比較大的旋臂有4條,但最近研究表明主要的旋臂只有兩條,另兩條都未發育完全)有9460800000億公里。中間最厚的部分約12000光年。太陽位於一條叫做獵戶臂的旋臂上,距離銀河系中心約2.6萬光年。

銀河系的發現經歷了漫長的過程。望遠鏡發明后,伽利略首先用望遠鏡觀測銀河,發現銀河由恆星組成。而後,T.賴特、I.康德、J.H.朗伯等認為,銀河和全部恆星可能集合成一個巨大的恆星系統。18世紀後期,F.W.赫歇爾用自製的反射望遠鏡開始恆星計數的觀測,以確定恆星系統的結構和大小,他斷言恆星系統呈扁盤狀,太陽離盤中心不遠。他去世后,其子J.F.赫歇爾繼承父業,繼續進行深入研究,把恆星計數的工作擴展到南天。20世紀初,天文學家把以銀河為表觀現象的恆星系統稱為銀河系。J.C.卡普坦應用統計視差的方法測定恆星的平均距離,結合恆星計數,得出了一個銀河系模型。在這個模型里,太陽居中,銀河系呈圓盤狀,直徑8千秒差距,厚2千秒差距。H.沙普利應用造父變星的周光關係,測定球狀星團的距離,從球狀星團的分佈來研究銀河系的結構和大小。他提出的模型是:銀河系是一個透鏡狀的恆星系統,太陽不在中心。沙普利得出,銀河系直徑80千秒差距,太陽離銀心20千秒差距。這些數值太大,因為沙普利在計算距離時未計入星際消光。20世紀20年代,銀河系自轉被發現以後,沙普利的銀河系模型得到公認。

銀河系是一個巨型棒旋星系(漩渦星系的一種),Sb型,共有4條旋臂。包含一、二千億顆恆星。銀河系整體作較差自轉,太陽處自轉速度約220千米/秒,太陽繞銀心運轉一周約2.5億年。銀河系的目視絕對星等為-20.5等,銀河系的總質量大約是我們太陽質量的1萬億倍,大致10倍於銀河系全部恆星質量的總和。這是我們銀河系中存在範圍遠遠超出明亮恆星盤的暗物質的強有力證據。關於銀河系的年齡,目前佔主流的觀點認為,銀河系在宇宙誕生的大爆炸之後不久就誕生了,用這種方法計算出,我們銀河系的年齡大概在145億歲左右,上下誤差各有20多億年。而科學界認為宇宙誕生的「大爆炸」大約發生137億年前。

年齡

依據歐洲南天天文台(ESO)的研究報告,估計銀河系的年齡約為136億歲(1010年),幾乎與宇宙一樣老。

由天文學家LucaPasquini,PiercarloBonifacio,SofiaRandich,DanieleGalli,andRaffaeleG.Gratton.所組成的團隊在2004年使用甚大望遠鏡(VLT)的紫外線視覺矩陣光譜儀進行的研究,首度在球狀星團NGC6397的兩顆恆星內發現了

鈹元素。這個發現讓他們將第一代恆星與第二代恆星交替的時間往前推進了2至3億年,因而估計球狀星團的年齡在134±8億歲,因此銀河系的年齡不會低於136±8億歲。

特徵

銀河系是太陽系所在的恆星系統,包括一千二百億顆恆星和大量的星團、星雲,還有各種類型的星際氣體和星際塵埃。它的總質量是太陽質量的1400億倍。在銀河系裡大多數的恆星集中在一個扁球狀的空間範圍內,扁球的形狀好像鐵餅。扁球體中間突出的部分叫「核球」,半徑約為7千光年。核球的中部叫「銀核」,四周叫「銀盤」。在銀盤外面有一個更大的球形,那裡星少,密度小,稱為「銀暈」,直徑為7萬光年。銀河系是一個旋渦星系,具有旋渦結構,即有一個銀心和兩個旋臂,旋臂相距4500光年。其各部分的旋轉速度和周期,因距銀心的遠近而不同。太陽距銀心約2.3萬光年,以220~250千米/秒的速度繞銀心運轉,運轉的周期約為2.4億年。

銀河系物質約90%集中在恆星內。恆星的種類繁多。按照恆星的物理性質、化學組成、空間分佈和運動特徵,恆星可以分為5個星族。最年輕的極端星族Ⅰ恆星主要分佈在銀盤裡的旋臂上;最年老的極端星族Ⅱ恆星則主要分佈在銀暈里。恆星常聚集成團。除了大量的雙星外,銀河系裡已發現了1000多個星團。銀河系裡還有氣體和塵埃,其含量約佔銀河系總質量的10%,氣體和塵埃的分佈不均勻,有的聚集為星雲,有的則散布在星際空間。20世紀60年代以來,發現了大量的星際分子,如CO、H2O等。分子云是恆星形成的主要場所。銀河系核心部分,即銀心或銀核,是一個很特別的地方。它發出很強的射電、紅外,X射線和γ射線輻射。其性質尚不清楚,那裡可能有一個巨型黑洞,據估計其質量可能達到太陽質量的250萬倍。對於銀河系的起源和演化,知之尚少。

1971年英國天文學家林登·貝爾和馬丁·內斯分析了銀河系中心區的紅外觀測和其他性質,指出銀河系中心的能源應是一個黑洞,並預言如果他們的假說正確,在銀河系中心應可觀測到一個尺度很小的發出射電輻射的源,並且這種輻射的性質應與人們在地面同步加速器中觀測到的輻射性質一樣。三年以後,這樣的一個源果然被發現了,這就是人馬A。

人馬A有極小的尺度,只相當於普通恆星的大小,發出的射電輻射強度為2*10(34次方)爾格/秒,它位於銀河系動力學中心的0.2光年之內。它的周圍有速度高達300公里/秒的運動電離氣體,也有很強的紅外輻射源。已知所有的恆星級天體的活動都無法解釋人馬A的奇異特性。因此,人馬A似乎是大質量黑洞的最佳候選者。但是由於目前對大質量的黑洞還沒有結論性的證據,所以天文學家們謹慎地避免用結論性的語言提到大質量的黑洞。我們的銀河系大約包含兩千億顆星體,其中恆星大約一千多億顆,太陽就是其中典型的一顆。銀河系是一個相當大的螺旋狀星系,它有三個主要組成部分:包含旋臂的銀盤,中央突起的銀心和暈輪部分。

螺旋星系M83,它的大小和形狀都很類似於我們的銀河系。銀盤外面是由稀疏的恆星和星際物質組成的球狀體,稱為銀暈,直徑約10萬光年。

銀河系有4條旋臂,分別是人馬臂,獵戶臂,英仙臂,天鵝臂。太陽位於獵戶臂內側。旋臂主要由星際物質構成。銀河系也有自轉。太陽系以每秒250千米速度圍繞銀河中心旋轉,旋轉一周約2.2億年。銀河系有兩個伴星系:大麥哲倫星系和小麥哲倫星系。與銀河系相對的稱之為河外星系。

一般認為,銀河系中的恆星多為雙星或聚星。而2006年新的發現認為,銀河系的主序星中2/3都是單星。

最新消息(20086.5)

據美國國家地理雜誌報道,日前,天文學家描繪出了銀河系最真實的地圖,最新地圖顯示,銀河系螺旋手臂與之前所觀測的結果大相徑庭,原先銀河系的四個主螺旋手臂,現只剩下兩個主螺旋手臂,另外兩個手臂處於未成形狀態。

這個描繪銀河系進化結構的研究報告發表在本周美國密蘇里州聖路易斯召開的第212屆美國天文學協會會議上。3日,威斯康星州立大學懷特沃特分校的羅伯特?本傑明將這項研究報告向記者進行了簡述。他指出,銀河系實際上只有兩個較小的螺旋手臂,與之前天文學家所推斷結果不相符。

在像銀河系這樣的棒旋星系,主螺旋手臂包含著高密度恆星,能夠誕生大量的新恆星,與星系中心的長恆星帶清晰地連接在一起。與之比較,未成形螺旋手臂所具有的高氣體密度不足以形成恆星。

長期以來,科學家認為銀河系有四個主螺旋手臂,但是最新的繪製地圖顯示銀河系實際上是由兩個主手臂和兩個未成形手臂構成。本傑明說,「如果你觀測銀河系的形成過程,主螺旋手臂連接恆星帶具有著重要的意義。同樣,這對最鄰近銀河系的仙女座星系也是這樣的。」

繪製銀河系地圖是一個不同尋常的挑戰,這對於科學家而言就如同一條小魚試圖探索整個太平洋海域一樣。尤其是灰塵和氣體時常模糊了我們對星繫結構的觀測。據悉,這個銀河系最新地圖主要基於「斯皮策」空間望遠鏡紅外線攝像儀所收集的觀測數據。威斯康星州立大學麥迪遜分校星系進化專家約翰?加拉格爾說,「通過紅外線波長,你可以透過灰塵實際地看到我們銀河系的真實結構。」目前,「斯皮策」空間望遠鏡所呈現的高清晰圖像使天文學家能夠觀測大質量恆星是如何進化、宇宙結構是如何成形的。

「斯皮策」空間望遠鏡科學中心從事攝像儀研究的肖恩?凱里說,「通過這些清晰圖片,你將真實地看到個別的太空目標,更加真實地理解銀河系的結構特徵。」

這張最新的銀河系地圖包括螺旋手臂密度和位置的數據資料,馬薩諸塞州哈佛-史密森天體物理學中心(CfA)馬克?里德說,「目前我們開始以立體距離跟蹤銀河系的螺旋手臂結構。」

CfA的托馬斯?戴姆指出,之前人們都認為我們的銀河系有兩對非常對稱的螺旋手臂,但最新研究顯示我們之前生活在美麗螺旋手臂星系夢想已破滅。

**

銀河系的總體結構是:銀河系物質的主要部分組成一個薄薄的圓盤,叫做銀盤,銀盤中心隆起的近似於球形的部分叫核球。在核球區域恆星高度密集,其中心有一個很小的緻密區,稱銀核。銀盤外面是一個範圍更大、近於球狀分佈的系統,其中物質密度比胎盤中低得多,叫作大便。銀暈外面還有銀冕,它的物質分佈大致也呈球形。

觀測到的銀河旋臂結構2005年,銀河系被發現以哈柏分類來區分應該是一個巨大的棒旋星系SBc(旋臂寬鬆的棒旋星系),總質量大約是太陽質量的6,000億至30,000億倍。有大約1,000億顆恆星。

從80年代開始,天文學家才懷疑銀河是一個棒旋星系而不是一個普通的螺旋星系。2005年,斯必澤空間望遠鏡證實了這項懷疑,還確認了在銀河的核心的棒狀結構與預期的還大。

銀河的盤面估計直徑為100,000光年,太陽至銀河中心的距離大約是26,000光年,盤面在中心向外凸起。

銀河的中心有巨大的質量和緊密的結構,因此強烈懷疑它有超重質量黑洞,因為已經有許多星系被相信有超重質量黑洞在核心。

就像許多典型的星系一樣,環繞銀河系中心的天體,在軌道上的速度並不由與中心的距離和銀河質量的分佈來決定。在離開了核心凸起或是在外圍,恆星的典型速度是每秒鐘210~240公里之間。因此這星恆星繞行銀河的周期只與軌道的長度有關,這與太陽系不同,在太陽系,距離不同就有不同的軌道速度對應著。

銀河的棒狀結構長約27,000光年,以44±10度的角度橫亘在太陽與銀河中心之間,他主要由紅色的恆星組成,相信都是年老的恆星。

被觀察到與推論的銀河旋臂結構每一條旋臂都給予一個數字對應(像所有旋渦星系的旋臂),大約可以分出100段。相信有四條主要的旋臂起源自銀河的核心,它們的名稱如下:

2and8-3kpc和英仙臂

3and7-距尺臂和天鵝臂(與最近發現的延伸在一起-6)

4and10-南十字座和盾牌臂

5and9-船底座和人馬臂

至少還有兩個小旋臂或分支,包括:

11-獵戶臂(包含太陽和太陽系在內-12)

在主要的旋臂外側是外環或稱為麒麟座環,這是天文學家布賴恩·顏尼(BrianYanny)和韓第·周·紐柏格(HeidiJoNewberg)提出,是環繞在銀河系外由恆星組成的環,其中包括在數十億年前與其他星系作用誕生的恆星和氣體。

銀河的盤面被一個球狀的銀暈包圍著,估計直徑在250,000至400,000光年。.由於盤面上的氣體和塵埃會吸收部份波長的電磁波,所以銀暈的組成結構還不清楚。盤面(特別是旋臂)是恆星誕生的活耀區域,但是銀暈中沒有這些活動,疏散星團也主要出現在盤面上。

銀河中大部分的質量是暗物質,形成的暗銀暈估計有6,000億至3兆個太陽質量,以傻子為中心被聚集著。

新的發現使我們對銀河結構與維度的認識有所增加,比早先經由仙女座星系(M31)的盤面所獲得的更多。最近新發現的證據,證實外環是由天鵝臂延伸出去的,明確的支持銀河盤面向外延伸的可能性。人馬座矮橢球星系的發現,與在環繞著銀極的軌道上的星系碎片,說明了他因為與銀河的交互作用而被扯碎。同樣的,大犬座矮星系也因為與銀河的交互作用,使得殘骸在盤面上環繞著銀河。

在2006年1月9日,MarioJuric和普林斯頓大學的一些人宣布,史隆數位巡天在北半球的天空中發現一片巨大的雲氣結構(橫跨約5,000個滿月大小的區域)位在銀河之內,但似乎不合於目前所有的銀河模型。他將一些恆星匯聚在垂直於旋臂所在盤面的垂在線,可能的解釋是小的矮星系與銀河合併的結果。這個結構位於室女座的方向上,距離約30,000光年,暫時被稱為室女恆星噴流。

在2006年5月9日,DanielZucker和VasilyBelokurov宣布史隆數位巡天在獵犬座和牧夫座又發現了兩個矮星系。

胎盤

胎盤(Galacticdisk):在老年痴獃中,由恆星、塵埃和氣體組成的扁平盤.

銀河系的物質密集部分組成一個圓盤,稱為銀盤。銀盤中心隆起的球狀部分稱核球。核球中心有一個很小的緻密區,稱銀核。銀盤外面範圍更大、近於球狀分佈的系統,稱為銀暈,其中的物質密度比銀盤的低得多。銀暈外面還有物質密度更低的部分,稱銀冕,也大致呈球形。銀盤直徑約25千秒差距,厚1~2秒差距,自中心向邊緣逐漸變薄,太陽位於銀盤內,離銀心約8.5千秒差距,在銀道面以北約8秒差距處。銀盤內有旋臂,這是氣體、塵埃和年輕恆星集中的地方。銀盤主要由星族Ⅰ天體組成,如G~K型主序星、巨星、新星、行星狀星雲、天琴RR變星、長周期變星、半規則變星等。核球是銀河系中心恆星密集的區域,近似於球形,直徑約4千秒差距,結構複雜。核球主要由星族Ⅱ天體組成,也有少量星族Ⅰ天體。核球的中心部分是銀核。它發出很強的射電、紅外、X射線和γ射線。其性質尚不清楚,可能包含一個黑洞。銀暈主要由暈星族天體,如亞矮星、貧金屬星、球狀星團等組成,沒有年輕的O、B型星,有少量氣體。銀暈中物質密度遠低於銀盤。銀暈長軸直徑約30千秒差距,年齡約1010年,質量還不十分清楚。在銀暈的恆星分布區以外的銀冕是一個大致呈球形的射電輻射區,其性質了解得甚少。

1785年,F.W.赫歇爾第一個研究了銀河繫結構。他用恆星計數方法得出銀河系恆星分佈為扁盤狀、太陽位於盤面中心的結論。1918年,H.沙普利研究球狀星團的空間分佈,建立了銀河系透鏡形模型,太陽不在中心。到了20世紀20年代,沙普利模型得到公認。但由於未計入星際消光,沙普利模型的數值不準確。研究銀河繫結構傳統上是用光學方法,但光學方法有一定的局限性。近幾十年來發展起來的射電方法和紅外技術成為研究銀河繫結構的強有力的工具。在沙普利模型的基礎上,對銀河系的結構已有了較深刻的了解。

銀盤是銀河系的主要組成部分,在銀河系中可探測到的物質中,有九成都在銀盤範圍以內。銀盤外形如薄透鏡,以軸對稱形式分佈於銀心周圍,其中心厚度約1萬光年,不過這是微微凸起的核球的厚度,銀盤本身的厚度只有2000光年,直徑近10萬光年,可見總體上說銀盤非常薄。

除了1000秒差距範圍內的銀核繞銀心作剛體轉動外,銀盤的其他部分都繞銀心作較差轉動,即離銀心越遠轉得越慢。銀盤中的物質主要以恆星形式存在,占銀河系總質量不到10%的星際物質,絕大部分也散布在銀盤內。星際物質中,除含有電離氫、分子氫及多種星際分子外,還有10%的星際塵埃,這些直徑在1微米左右的固態微粒是造成星際消光的主要原因,它們大都集中在銀道面附近。

由於太陽位於銀盤內,所以我們不容易認識銀盤的起初面貌。為了探明銀盤的結構,根據本世紀40年代巴德和梅奧爾對旋渦星系M31(仙女座大星雲)旋臂的研究得出旋臂天體的主要類型,進而在銀河系內普查這幾類天體,發現了太陽附近的三段平行臂。由於星際消光作用,光學觀測無法得出銀盤的總體面貌。有證據表明,旋臂是星際氣體集結的場所,因而對星際氣體的探測就能顯示出旋臂結構,而星際氣體的21厘米射電譜線不受星際塵埃阻擋,幾乎可達整個銀河系。光學與射電觀測結果都表明,銀盤確實具有旋渦結構。

銀心

星系的中心凸出部分,是一個很亮的球狀,直徑約為兩萬光年,厚一萬光年,這個區域由高密度的恆星組成,主要是年齡大約在一百億年以上老年的紅色恆星,很多證據表明,在中心區域存在著一個巨大的黑洞,星系核的活動十分劇烈。銀河系的中心﹐即銀河系的自轉軸與銀道面的交點。

銀心在人馬座方向﹐1950年曆元坐標為﹕赤經174229﹐赤緯-28°5918。銀心除作為一個幾何點外﹐它的另一含義是指銀河系的中心區域。太陽距銀心約10千秒差距﹐位於銀道面以北約8秒差距。銀心與太陽系之間充斥著大量的星際塵埃﹐所以在北半球用光學望遠鏡難以在可見光波段看到銀心。射電天文和紅外觀測技術興起以後﹐人們才能透過星際塵埃﹐在2微米到73厘米波段﹐探測到銀心的信息。中性氫21厘米譜線的觀測揭示﹐在距銀心4千秒差距處o有氫流膨脹臂﹐即所謂「三千秒差距臂」(最初將距離誤定為3千秒差距﹐后雖訂正為4千秒差距﹐但仍沿用舊名)。大約有1﹐000萬個太陽質量的中性氫﹐以每秒53公里的速度湧向太陽系方向。在銀心另一側﹐有大體同等質量的中性氫膨脹臂﹐以每秒135公里的速度離銀心而去。它們應是1﹐000萬至1﹐500萬年前﹐以不對稱方式從銀心拋射出來的。在距銀心300秒差距的天區內﹐有一個繞銀心快速旋轉的氫氣盤﹐以每秒70~140公里的速度向外膨脹。盤內有平均直徑為30秒差距的氫分子云。

在距銀心70秒差距處﹐則有激烈擾動的電離氫區﹐也以高速向外擴張。現已得知﹐不僅大量氣體從銀心外涌﹐而且銀心處還有一強射電源﹐即人馬座A﹐它發出強烈的同步加速輻射。甚長基線干涉儀的探測表明﹐銀心射電源的中心區很小﹐甚至小於10個天文單位﹐即不大於木星繞太陽的軌道。12.8微米的紅外觀測資料指出﹐直徑為1秒差距的銀核所擁有的質量﹐相當於幾百萬個太陽質量﹐其中約有100萬個太陽質量是以恆星形式出現的。腥巳銜o銀心區有一個大質量緻密核﹐或許是一個黑洞。流入緻密核心吸積盤的相對論性電子﹐在強磁場中加速﹐於是產生同步加速輻射。銀心氣體的運動狀態﹑銀心強射電源以及有強烈核心活動的特殊星系(如塞佛特星系)的存在﹐使我們認為﹕在星系包括銀河系的演化史上﹐曾有過核心激擾活動﹐這種活動至今尚未停息。

銀暈

銀河暈輪彌散在銀盤周圍的一個球形區域內,銀暈直徑約為九萬八千光年,這裡恆星的密度很低,分佈著一些由老年恆星組成的球狀星團,有人認為,在銀暈外面還存在著一個巨大的呈球狀的射電輻射區,稱為銀冕,銀冕至少延伸到距銀心一百千秒差距或三十二萬光年遠。

銀河系是一個透鏡形的系統,直徑約為25千秒差距,厚約為1~2千秒差距。它的主體稱為銀盤。高光度星、銀河星團和銀河星雲組成旋渦結構迭加在銀盤上。銀河系中心為一大質量核球,長軸長4~5千秒差距,厚4千秒差距。銀河係為直徑約30千秒差距的銀暈籠罩。銀暈中最亮的成員是球狀星團。銀河系的質量為1.4×1011太陽質量,其中恆星約佔90%,氣體和塵埃組成的星際物質約佔10%。銀河系整體作較差自轉。太陽在銀道面以北約8秒差距處距銀心約10千秒差距,以每秒250公里速度繞銀心運轉,2.5億年轉一周。太陽附近物質(恆星和星際物質)的總密度約為0.13太陽質量/秒差距3或8.8×10-24克/厘米3。銀河系是一個Sb或Sc型旋渦星系,擁有一、二千億顆恆星,為本星系群中除仙女星系外最大的巨星系。它的視絕對星等為Mv=-20.5。它以1010年的時間尺度演化。

太陽在銀河系中的位置

太陽(包括地球和太陽系)都在獵戶臂靠近內側邊緣的位置上,在本星際雲(LocalFluff)中,距離銀河中心7.94±0.42千秒差距我們所在的旋臂與鄰近的英仙臂大約相距6,500光年。我們的太陽與太陽系,正位在科學家所謂的銀河的生命帶。

太陽運行的方向,也稱為太陽向點,指出了太陽在銀河系內遊歷的路徑,基本上是朝向織女,靠近武仙座的方向,偏離銀河中心大約86度。太陽環繞銀河的軌道大致是橢圓形的,但會受到旋臂與質量分佈不均勻的擾動而有些變動,我們目前在接近近銀心點(太陽最接近銀河中心的點)1/8軌道的位置上。

太陽系大約每2.25—2.5億年在軌道上繞行一圈,可稱為一個銀河年,因此以太陽的年齡估算,太陽已經繞行銀河20—25次了。太陽的軌道速度是2m/s,換言之每8天就可以移動1天文單位,1400年可以運行1光年的距離。

海頓天象館的8.0千秒差距的立體銀河星圖,正好涵蓋到銀河的中心。

銀河系的鄰居

銀河、仙女座星系和三角座星系是本星系群主要的星系,這個群總共約有50個星系,而本地群又是室女座超星系團的一份子。

銀河被一些本星系群中的矮星系環繞著,其中最大的是直徑達21,000光年的大麥哲倫雲,最小的是船底座矮星系、天龍座矮星系和獅子II矮星系,直徑都只有500光年。其他環繞著銀河系的還有小麥哲倫雲,最靠近的是大犬座矮星系,然後是人馬座矮橢圓星系、小熊座矮星系、御夫座矮星系、六分儀座矮星系、天爐座矮星系和獅子I矮星系。

在2006年1月,研究人員的報告指出,過去發現銀河的盤面有不明原因的傾斜,現在已經發現是環繞銀河的大小麥哲倫雲的擾動所造成的漣漪。是在她們穿過銀河系的邊緣時,導致了某些頻率的震動所造成的。這兩個星系的質量大約是銀河的2%,被認為不足以影響到銀河。但是加入了暗物質的考量,這兩個星系的運動就足以對較大的銀河造成影響。在加入暗物質之後的計算結果,對銀河的影響增加了20倍,這個計算的結果是根據馬薩諸塞州大學阿默斯特分校馬丁·溫伯格的電腦模型完成的。在他的模型中,暗物質的分佈從銀河的盤面一直分佈到已知的所有層面中,結果模型預測當麥哲倫星系通過銀河時,重力的衝擊會被放大。

研究

古代探索史

雖然從非常久遠的古代,人們就認識了銀河系。但是對銀河系的真正認識還是從近代開始的。

1750年,英國天文學家賴特(WrightThomas)認為銀河系是扁平的。1755年,德國哲學家康德提出了恆星和銀河之間可能會組成一個巨大的天體系統;隨後的德國數學家郎伯特(LambertJohannheinrich)也提出了類似的假設。到1785年,英國天文學家威廉·赫歇耳繪出了銀河系的扁平形體,並認為太陽系位於銀河的中心。

1918年,美國天文學家沙普利(HarlowShapley)經過4年的觀測,提出太陽系應該位於銀河系的邊緣。1926年,瑞典天文學家林得布拉德(LindbladBertil)分析出銀河系也在自轉。

近代研究

十八世紀中葉人們已意識到,除行星、月球等太陽系天體外,滿天星斗都是遠方的「太陽」。賴特、康德和朗伯特最先認為,很可能是全部恆星集合成了一個空間上有限的巨大系統。

第一個通過觀測研究恆星系統本原的是F.W.赫歇耳。他用自己磨製的反射望遠鏡,計數了若干天區內的恆星。1785年,他根據恆星計數的統計研究,繪製了一幅扁而平、輪廓參差、太陽居其中心的銀河繫結構圖。他用50厘米和120厘米口徑望遠鏡觀測,發現望遠鏡貫穿本領增加時,觀察到的暗星也增多,但是仍然看不到銀河系的邊緣。F.W.赫歇耳意識到,銀河系遠比他最初估計的為大。F.W.赫歇耳死後,其子J.F.赫歇耳繼承父業,將恆星計數工作範圍擴展到南半天。十九世紀中葉,開始測定恆星的距離,並編製全天星圖。1906年,卡普坦為了重新研究恆星世界的結構,提出了「選擇星區」計劃,後人稱為「卡普坦選區」。他於1922年得出與F.W.赫歇耳的類似的模型,也是一個扁平系統,太陽居中,中心的恆星密集,邊緣稀疏。沙普利在完全不同的基礎上,探討銀河系的大小和形狀。他利用1908~1912年勒維特發現的麥哲倫雲中造父變星的周光關係,測定了當時已發現有造父變星的球狀星團的距離。在假設沒有明顯星際消光的前提下,於1918年建立了銀河系透鏡形模型,太陽不在中心。到二十年代,沙普利模型已得到天文界公認。由於未計入星際消光效應,沙普利把銀河系估計過大。到1930年,特朗普勒證實星際物質存在後,這一偏差才得到糾正。

銀河系物質約90%集中在恆星內。1905年,赫茨普龍發現恆星有巨星和矮星之分。1913年,赫羅圖問世后,按照光譜型和光度兩個參量,得知除主序星外,還有超巨星、巨星、亞巨星、亞矮星和白矮星五個分支。1944年,巴德通過仙女星系的觀測,判明恆星可劃分為星族Ⅰ和星族Ⅱ兩種不同的星族。星族Ⅰ是年輕而富金屬的天體,分佈在旋臂上,與星際物質成協。星族Ⅱ是年老而貧金屬的天體,沒有向銀道面集聚的趨向。1957年,根據金屬含量、年齡、空間分佈和運動特徵,進而將兩個星族細分為中介星族Ⅰ、旋臂星族(極端星族Ⅰ)、盤星族、中介星族Ⅱ和暈星族(極端星族Ⅱ)。

恆星成雙、成群和成團是普遍現象。在太陽附近25秒差距以內,以單星形式存在的恆星不到總數之半。迄今已觀測到球狀星團132個,銀河星團1,000多個,還有為數不少的星協。據統計推論,應當有18,000個銀河星團和500個球狀星團。二十世紀初,巴納德用照相觀測,發現了大量的亮星雲和暗星雲。1904年,恆星光譜中電離鈣譜線的發現,揭示出星際物質的存在。隨後的分光和偏振研究,證認出星雲中的氣體和塵埃成分。近年來通過紅外波段的探測發現在暗星雲密集區有正在形成的恆星。射電天文學誕生后,利用中性氫21厘米譜線勾畫出銀河系旋渦結構。根據電離氫區的描繪,發現太陽附近有三條旋臂:人馬臂、獵戶臂和英仙臂;太陽位於獵戶臂的內側。此外,在銀心方向還發現了一條3千秒差距臂。旋臂間的距離約1.6千秒差距。1963年,用射電天文方法觀測到星際分子OH,這是自從1937~1941年間,在光學波段證認出星際分子CH、CN和CH+以來的重大突破。到1979年底,發現的星際分子已超過50種。

銀河系的起源這一重大課題目前還了解得很差。這不僅要研究一般星系的起源和演化,還必須研究宇宙學。按大爆炸宇宙學假說,我們觀測到的全部星系都是1010年前高密態原始物質因密度發生起伏,出現引力不穩定和不斷膨脹,逐步形成原星系,並演化為包括銀河系在內的星系團的。而穩恆態宇宙模型假說則認為,星系是在高密態的原星系核心區連續形成的。

銀河系演化的研究近年來才有一些成就。關於太陽附近老年恆星空間運動的資料表明,在原銀河星雲的坍縮過程中,最早誕生的是暈星族,它們的年齡是100多億年,化學成分是氫約佔73%,氦約佔27%。而大部分氣體物質集聚為銀盤,並隨後形成盤星族。近年還從恆星的形成和演化、元素的丰度的變遷、銀核的活動及其在演化中的地位等角度探討銀河系的整體演化。六十年代發展起來的密度波理論,很好地說明了銀河系旋渦結構的整體結構及其長期的維持機制。

相關資料

(1)周邊星系

NGC7331經常被視為「銀河的雙胞胎」,從銀河系之外回顧我們的銀河或許就是這個樣子。銀河、仙女座星系和三角座星系是本星系群主要的星系,這個群總共約有50個星系,而本地群又是室女座超星系團的一份子。

銀河被一些本星系群中的矮星系環繞著,其中最大的是直徑達21,000光年的大麥哲倫雲,最小的是船底座矮星系、天龍座矮星系和獅子II矮星系,直徑都只有500光年。其他環繞著銀河系的還有小麥哲倫雲,最靠近的是大犬座矮星系,然後是人馬座矮橢圓星系、小熊座矮星系、玉夫座矮星系、六分儀座矮星系、天爐座矮星系和獅子I矮星系。

在2006年1月,研究人員的報告指出,過去發現銀河的盤面有不明原因的傾斜,現在已經發現是環繞銀河的大小麥哲倫雲的擾動所造成的漣漪。是在她們穿過銀河系的邊緣時,導致了某些頻率的震動所造成的。這兩個星系的質量大約是銀河的2%,被認為不足以影響到銀河。但是加入了暗物質的考量,這兩個星系的運動就足以對較大的銀河造成影響。在加入暗物質之後的計算結果,對銀河的影響增加了20倍,這個計算的結果是根據麻薩諸塞州大學阿默斯特分校馬丁·溫伯格的電腦模型完成的。在他的模型中,暗物質的分佈從銀河的盤面一直分佈到已知的所有層面中,結果模型預測當麥哲倫星系通過銀河時,重力的衝擊會被放大。

(2)穿過空間的速度

一般而言,根據愛因斯坦的狹義相對論,任何物體通過空間時的絕對速度是沒有意義的,因為在太空中沒有合適的慣性參考系統,可以作為測量銀河速度的依據(運動的速度,總是需要與另一個物體比較才能量度)。

因為各向宇宙微波背景輻射非常的均勻,只有萬分之幾的起伏.所以就讓喬治·斯穆特想到了一個方法,就是測量宇宙微波背景輻射有沒有偶極異向性。

在1977年,美國勞倫斯伯克萊國立實驗室的喬治·斯穆特等人,將微波探測器安裝在U-2偵察機上面,確切地測到了宇宙微波背景輻射的偶極異向性,大小為3.5±0.6mK,換算后,太陽系在宇宙中的運動速度約為390±60km/s,但這個速度,與太陽系繞行銀河系核的速度220km/s方向相反,這代表銀河系核在宇宙中的速度,約為600多km/s。

有鑒於此,許多天文學家相信銀河以每秒600公里的速度相對於鄰近被觀測到的星系在運動,大部份的估計值都在每秒130~1,000公里之間。如果銀河的確以每秒600公里的速度在運動,我們每天就會移動5,184萬公里,或是每年189億公里。相較於太陽系內,每年移動的距離是地球與冥王星最接近時距離的4.5倍。銀河在空間中運動的方向是指向長蛇座的方向。

(3)神話

世界各地有許多創造天地的神話圍繞著銀河系發展出來。很特別的是,在希臘就有兩個相似的希臘神話故事在解釋銀河是怎麼來的。有些神話將銀河和星座結合在一起,認為成群牛隻的乳液將深藍色的天空染白了。在東亞,人們相信在天空中群星間的霧狀帶是銀色的河流,也就是我們所說的天河。

Akashaganga是印度人給銀河的名稱,意思是天上的恆河。

依據希臘神話,銀河是赫拉在發現宙斯以欺騙的手法誘使他去餵食年幼的赫爾克里斯因而濺灑在天空中的奶汁。另一種說法則是赫耳墨斯偷偷的將赫爾克里斯帶去奧林匹斯山,趁著赫拉沉睡時偷吸他的奶汁,而有一些奶汁被射入天空,於是形成了銀河。

在芬蘭神話中,銀河被稱為鳥的小徑,因為它們注意到候鳥在向南方遷徙時,是靠著銀河來指引的,它們也認為銀河才是鳥真正的居所。現在,科學家已經證實了這項觀測是正確的,候鳥確實在依靠銀河來引導,在冬天才能到溫暖的南方陸地居住。即使在今天,芬蘭語中的銀河依然使用Linnunrata這個字。

在瑞典,銀河系被認為是冬天之路,因為在斯堪的納維亞地區,冬天的銀河是一年中最容易被看見的。

古代的亞美尼亞神話稱銀河係為麥稈賊之路,敘述有一位神祇在偷竊麥稈之後,企圖用一輛木製的運貨車逃離天堂,但在路途中掉落了一些麥稈。

(4)銀河的未來

目前的觀測認為仙女座星系(M31)正以每秒300公里的速度朝向銀河系運動,在30-40億年後可能會撞上銀河系。但即始真的的發生碰撞,太陽以及其他的恆星也不會互相碰撞,但是這兩個星系可能會花上數十億年的時間合併成橢圓星系。

天文學家發現銀河系「比之前想象的要大」

據英國廣播公司6日報道,由國際天文學家組成的研究小組發現,地球所在的銀河系比原來以為的要大,運轉的速度也更快。

天文學家利用在夏威夷、加勒比海地區和美國東北部的天文望遠鏡觀察得出結論,銀河系正以每小時90萬公里的速度轉動,比之前估計的快大約百分之十。

銀河系的體積也比之前預計的大一半左右。

科學家們指出,體積越大,與鄰近星河發生災難性撞擊的可能性也增大。

不過,即使發生也將是在二、三十億年之後。

美國哈佛-史密森天體物理學中心的研究員利用「超長基線陣列」(VeryLongcenterArray)儀器來推論地球所在銀河系的質量和速度。

研究員表示,使用這個方法找出的數據更準確,比較以前的方式所需要的假定更小。

研究員還說,最新發現顯示銀河系與仙女座星系(AndromedaGalaxy)的大小相約。

仙女座星系、銀河系和三角星系是地球所在的星系中三個最大的星系群。

此前,科學家一直認為仙女座最大,銀河系只是仙女座的「小妹妹」。

研究員在美國加利福尼亞州第213屆美國太空學會會議上發表有關研究結果。

【銀河系常用數據表】

質量≈10E11太陽質量

直徑≈100千秒差距

銀心方向:α=17h42m.5,δ=-28°59′

太陽距銀心≈9千秒差距

北銀極:α=12h49m,δ=-27°2『

太陽處銀河系旋轉速度≈250公里/秒

太陽處銀河系旋轉周期≈220E6年

相對於3K背景的運動速度≈600公里/秒

(朝向α=10h,δ=-20°方向)

全景圖

2009年12月5日發表了繪製的最新銀河系全景圖

最新發現

銀河系奇異恆星的伴星現身

科學家利用NASA的遠紫外譜儀探索衛星首次探測到船底座伊塔星(EtaCarinae)的伴星。船底座伊塔星是銀河系中最重最奇異的星體,座落在離地球7500光年船底座,在南半球用肉眼就可以清楚的看到。科學家認為船底座伊塔星是一個正迅速走向衰亡的不穩定恆星。

長期以來,科學家們就推斷它應該存在著一顆伴星,但是一直得不到直接的證據。間接的證據來自其亮度呈現的規則變化。科學家發現船底座伊塔星在可見光,X-射線,射電波和紅外線波段的亮度都呈現規則的重覆模式,因此推測它可能是一個雙星系統。最有力的證據是每過5年半,船底座伊塔星系統發出的X-射線就會消失約三個月時間。科學家認為船底座伊塔星溫度太低,本身並不能發出X-射線,但是它以每秒300英里的速度向外噴發氣體粒子,這些氣體粒子和伴星發出的粒子相互碰撞后發出X-射線。科學家認為X-射線消失的原因是船底座伊塔星每隔5年半就擋住了這些X-射線。最近一次X-射線消失開始於2003年6月29日。

科學家推斷船底座伊塔星和其伴星的距離是地球到太陽之間的距離的10倍,因為它們距離太近,離地球又太遠,無法用望遠鏡直接將它們區分開。另外一種方法就是直接觀測伴星所發出的光。但是船底座伊塔星的伴星比其本身要暗的多,以前科學家曾經試圖用地面望遠鏡和哈勃望遠鏡觀測,但都沒有成功。

美國天主教大學的科學家羅辛納.而平(RosinaIping)及其合作者利用遠紫外譜儀衛星來觀測這顆伴星,因為它比哈勃望遠鏡能觀測到波長更短的紫外線。它們在6月10日,17日觀測到了遠紫外線,但是在6月27日,也就是在X-射線消失前的兩天遠紫外線消失了。觀測到的遠紫外線來自船底座伊塔星的伴星,因為船底座伊塔星溫度太低,本身不會發出遠紫外線。這意味著船底座伊塔星擋住了X-射線的同時也擋住了伴星。這是科學家首次觀測到船底座伊塔星的伴星發出的光,從而證實了這顆伴星的存在。

有三個太陽的恆星

據新華社14日電據14日出版的《自然》雜誌報道,美國天文學家在距離地球149光年的地方發現了一個具有三顆恆星的奇特星系,在這個星系內的行星上,能看到天空中有三個太陽。

美國加州理工學院的天文學家在該雜誌上報告說,他們發現天鵝星座中的HD188753星系中有3顆恆星。處於該星系中心的一顆恆星與太陽系中的太陽類似,它旁邊的行星體積至少比木星大14%。該行星與中心恆星的距離大約為800萬公里,是太陽和地球之間距離的二十分之一。而星系的另外兩顆恆星處於外圍,它們彼此相距不遠,也圍繞中心恆星公轉。

銀河系中的星系多為單星系或雙星系,具有三顆以上恆星的星系被稱為聚星系,不太多見。

恆星並不是平均分佈在宇宙之中,多數的恆星會受彼此的引力影響,形成聚星系統,如雙星、三恆星,甚至形成星團,及星系等由數以億計的恆星組成的恆星集團。

天文學家發現宇宙中生命誕生是普遍的現象

近日美國宇航局尋找地球以外生命物質存在證據的科研小組研究發現,某些在實際生命化學反應中起到至關重要作用的有機化學物質,普遍存在於我們地球以外的浩瀚宇宙中。研究結果表明,在宇宙深處存在生命物質、或者有孕育生命物質的化學反應發生,這在浩瀚的宇宙中是一種普遍現象。

上述研究來自「美國宇航局艾姆斯研究中心(NASAAmesRearchCenter)」的一個外空生物科研小組。在該小組工作的科學家道格拉斯-希金斯介紹時稱:「根據科研小組最新的研究結果顯示,一類在生物生命化學中起至關重要作用的化合物,在廣袤的宇宙空間中廣泛而且大量地存在著。」作為該外空生物學研究小組的主要成員之一,道格拉斯-希金斯以第一作者的身份將他們的最新研究成果撰文發表在10月10日出版的《天體物理學》雜誌上。

希金斯在描述其研究結果時介紹:「利用美國宇航局斯皮策太空望遠鏡(SpitzerSpaceTelescope)最近的觀測結果,天文學家在我們所居住的銀河系內,到處都發現了一種複雜有機物『多環芳烴』(PAHs)存在的證據。但是這項發現一開始只得到天文學家的重視,並沒有引起對外空生物進行研究的天體生物學家們的興趣。因為對於生物學而言,普通的多環芳烴物質存在並不能說明什麼實質問題。但是,我們的研究小組在最近一項分析結果中卻驚喜的發現,宇宙中看到的這些多環芳烴物質,其分子結構中含有『氮』元素(N)的成分,這一意外發現使我們的研究發生了戲劇性改變。」

該研究小組的另一成員,來自美國宇航局艾姆斯研究中心的天體生物學家路易斯-埃蘭曼德拉說:「包括DNA分子在內,對於大多數構成生命的化學物質而言,含氮的有機分子參與是必須的條件。舉一個含氮有機物質在生命物質意義上最典型的例子,象我們所熟悉的葉綠素,其對於植物的光合作用起著關鍵作用,而葉綠素分子中富含這種含氮多環芳烴(PANHs)成分。」

據介紹,在科研小組的研究工作中,除了利用來自斯皮策望遠鏡得到的觀測數據外,科研人員還使用了歐洲宇航局太空紅外天文觀測衛星的觀測數據。在美國宇航局艾姆斯研究中心的實驗室中,研究人員對這類特殊的多環芳烴,利用紅外光譜化學鑒定技術對其分子結構和化學成分進行了全面分析,找到其中氮元素存在的證據。同時科學家利用計算機技術對這些宇宙中普遍存在的含氮多環芳烴,進行了紅外射線光譜模擬分析。

路易斯-埃蘭曼德拉同時還表示:「除去上述分析結論以外,更加富有戲劇性的發現是,在斯皮策太空望遠鏡的觀測中還顯示出,在宇宙中一些即將死亡的恆星天體周圍,環繞其外的眾多星際物質中,都大量蘊藏著這種特殊的含氮多環芳烴成分。這一發現從某種意義上似乎也告訴我們,在浩瀚的宇宙星空中,即使在死亡來臨的時候,同時也孕育著新生命開始的火種。」

宇宙正膨脹發現暗能量

通過分析星系團(圖中左側的點),斯隆數字天空觀測計劃天文學家確定,暗能量正在驅動著宇宙不斷地膨脹。

據英國《衛報》報道,證實宇宙正在膨脹是本年度最重大的科學突破。

報道說,近73%的宇宙由神秘的暗能量組成,它是一種反重力。在19日出版的美國《科學》雜誌上,暗能量的發現被評為本年度最重大的科學突破。通過望遠鏡,人類在宇宙中已經發現近2000億個星系,每一個星系中又有約2000億顆星球。但所有這些加起來僅占整個宇宙的4%。

現在,在新的太空探索基礎上,以及通過對100萬個星系進行仔細研究,天文學家們至少已經弄清了部分情況。約23%的宇宙物質是「暗物質」。沒有人知道它們究竟是什麼,因為它們無法被檢測到,但它們的質量大大超過了可見宇宙的總和。而近73%的宇宙是最新發現的暗能量。這種奇特的力量似乎正在使宇宙加速膨脹。英國皇家天文學家馬丁·里斯爵士將這一發現稱為「最重要的發現」。

這一發現是繞軌道運行的威爾金森微波各向異性探測器(WMAP)和斯隆數字天文台(SDSS)的成果。它解決了關於宇宙的年齡、膨脹的速度及組成宇宙的成分等一系列問題的長期爭論。天文學家現在相信宇宙的年齡是137億年

上一章書籍頁下一章

限制級傭兵

···
加入書架
上一章
首頁 耽美同人 限制級傭兵
上一章下一章

UN在遠征中經過的最大航途---銀河系

%